miércoles, 7 de octubre de 2009

SOLUCIONES

SOLUCIONES QUIMICAS

SOLUCIONES:
Mezclas homogéneas (una sola fase) con composiciones variables. Resultan de la mezcla de dos o más sustancias puras diferentes cuya unión no produce una reacción química sino solamente un cambio físico. Una sustancia (soluto) se disuelve en otra (solvente) formando una sola fase. Los componentes pueden separarse utilizando procedimientos físicos.

MEZCLAS:

Mezclas heterogéneas (más de una fase). Resultan de la mezcla de dos o más sustancias puras diferentes cuya unión no produce una reacción química sino solamente un cambio físico.

FASE:

Porción de materia con propiedades uniformes. Porción de un sistema separado de los otros por límites físicos.

SOLUTO:

Componente de una solución que se encuentra en cantidad menor. Es la fase de menor proporción.

SOLVENTE:

Componente de una solución que se encuentra en cantidad mayor. Es la fase de mayor proporción.

SOLUCIÓN ACUOSA:

El solvente es el agua. El soluto puede ser un sólido, un líquido o un gas.

TIPOS DE SOLUCIONES:

- Gas en líquido.

- Líquido en líquido.

- Sólido en líquido.

- Gas en gas.

- Líquido en gas.

- Sólido en gas.

- Gas en sólido.

- Líquido en sólido.

- Sólido en sólido.

SOLUBILIDAD:

Cantidad máxima de soluto que puede ser disuelta por un determinado solvente. Varía con la presión y con la temperatura. Es un dato cuantitativo.

MISCIBILIDAD:

Capacidad de una sustancia para disolverse en otra. Es un dato cualitativo. Separa los pares de sustancias en "miscibles" y "no miscibles".

CURVA DE SOLUBILIDAD:
Representación gráfica de la solubilidad de un soluto en determinado solvente (eje y) en función de la temperatura (eje x).

SOLUCIÓN SATURADA:

Solución que contiene la máxima cantidad de soluto que el solvente puede disolver a esa presión y esa temperatura. Si se le agrega más soluto no lo disuelve: si es un sólido en un solvente líquido, el exceso precipita; si es un líquido en solvente líquido, el exceso queda separado del solvente por encima o por debajo según su densidad relativa; si es un gas en un solvente líquido, el exceso de soluto escapa en forma de burbujas. En una solución saturada de un sólido en un líquido, el proceso de disolución tiene la misma velocidad que el proceso de precipitación.

SOLUCIÓN NO SATURADA:

Solución que contiene una cantidad de soluto menor que la que el solvente puede disolver a esa presión y esa temperatura.

CARACTERÍSTICA GENERAL DE LA SOLUBILIDAD:

Como ya fuera descubierto hace varios siglos, "lo similar disuelve a lo similar". Las sustancias iónicas son solubles en solventes iónicos. Las sustancias covalentes son solubles en solventes covalentes.

CASO PARTICULAR. SOLUCIONES DE GASES EN LÍQUIDOS:

La solubilidad de un soluto gaseoso en un solvente líquido depende de cuatro factores:

a) temperatura;

b) presión;

c) energía; y

d) entropía.


Se aplica la llamada "Ley de Henry" que permite conocer la presión parcial del soluto gaseoso en función de su fracción molar y de una constante que depende del gas y de su temperatura.

FACTORES QUE INFLUYEN EN LA VELOCIDAD DE DISOLUCIÓN:

a) tamaño de las partículas del soluto;

b) naturaleza física del soluto;

c) naturaleza física del solvente;

d) temperatura; y

e) grado de agitación del soluto y del solvente.

MÉTODOS DE SEPARACIÓN DE MEZCLAS HOMOGÉNEAS Y HETEROGÉNEAS:


Existen numerosos métodos, la mayoría adaptados a casos especiales de solutos y solventes determinados, bajo condiciones determinadas. Según el profesor Carlos Mosquera Suárez, de la U. D. Fco. José de Caldas (Colombia), doce son los métodos generales más utilizados:


Disolución (sólido de sólido - uno soluble y el otro no).
- Maceración (sólido de sólido - trituración + disolución).
- Extracción (sólido de sólido - en frío con Soxhlet o en caliente por decocción).
- Lixiviación (sólido de sólido - disolución con arrastre).
- Tamizado (sólido de sólido - a través de mallas de alambre de distintos diámetros). - Destilación (líquido de líquido - homogénea - por diferencia en el punto de ebullición entre ambos).
- Decantación (líquido de líquido - heterogénea - por diferencia entre la densidad de ambos).
- Evaporación (sólido de líquido - homogénea - se calienta para evaporar el solvente y queda el soluto).
- Cristalización (sólido de líquido - homogénea - se baja la temperatura para que cristalice el sólido - luego se filtra o decanta).
- Filtración (sólido de líquido - heterogénea - se hace pasar a través de un filtro que retenga el sólido pero no el líquido).
- Centrifugación (sólido de líquido - homogénea - se aumenta la aceleración de la gravedad por aumentar la fuerza centrífuga, facilitando la precipitación del sólido).
- Cromatografía (todos los casos - homogénea - se usa una fase móvil y una fija, la móvil viaja sobre la fija y sus componentes se van separando según su facilidad de migración, la que depende de diversos factores, por ejemplo su peso molecular).

EXPRESIÓN DE LAS CONCENTRACIONES DE LAS SOLUCIONES: Concentración: cantidad de soluto disuelto en una determinada cantidad de solvente, o cantidad de soluto disuelto en una determinada cantidad de solución.
Siempre indica una proporción entre soluto y solvente.

Porcentaje en masa (m/m): Cantidad de gramos de soluto disuelto en 100 gramos de solución.

Porcentaje en volumen (V/V): Volumen en mililitros de soluto disuelto en 100 mililitros de solución.

Porcentaje masa a volumen (m/V): Cantidad de gramos de soluto disuelto en 100 mililitros de solución.

Partes por millón (ppm): Cantidad de miligramos de soluto disuelto en 1 litro (ó 1 Kg) de solución.

Formalidad (F): Cantidad de "moles fórmula" de soluto disuelto en 1 litro de solución. Un mol fórmula toma en cuenta la molécula de soluto sin disociar.

Molaridad (M): Cantidad de moles de soluto disuelto en 1 litro de solución. Este concepto de mol se aplica a la molécula de soluto disociada en iones.

Molalidad (m): Cantidad de moles de soluto disuelto en 1 Kg de solvente.

Normalidad (N): Cantidad de equivalentes-gramo de soluto disuelto en 1 litro de solución. Equivalente-gramo es la cantidad de sustancia que reaccionaría con 1,008 gramos de hidrógeno, es decir, con un átomo-gramo de este elemento


Fracción molar (X): Cantidad de moles de soluto o de solvente con respecto al número total de moles de la solución.

Porcentaje molar (X%); Fracción molar multiplicada por 100.

BIBLIOGRAFIA:
http://olydan.iespana.es/quimsolucion.htm

TABLA PERIODICA

Tabla periódica de los elementos


La tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.


Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.


Historia


La historia de la tabla periódica está íntimamente relacionada con varios aspectos del desarrollo de la química y la física:



  • El descubrimiento de los elementos de la tabla periódica


  • El estudio de las propiedades comunes y la clasificación de los elementos


  • La noción de masa atómica (inicialmente denominada "peso atómico") y, posteriormente, ya en el siglo XX, de número atómico y


  • Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.


El descubrimiento de los elementos


Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.

La noción de elemento y las propiedades periódicas


Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.


El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.


Los pesos atómicos


A principios del siglo XIX, John Dalton (1766-1844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre las proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de wolframio, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.


Metales, no metales y metaloides o metales de transición


La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.


Triadas de Döbereiner


Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio).


Ley de las octavas de Newlands



En 1864, el químico inglés John Alexander Reina Newlands comunicó al Royal College of Chemistry (Real Colegio de Química) su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.


Tabla periódica de Mendeleiev



En 1869, el ruso Dimitri Mendeleiev publica su primera Tabla Periódica en Alemania. Un año depués lo hace Lothar Meyer, que basó su clasificación periódica en la periodicidad de los volúmenes atómicos en función de la masa atómica de los elementos.


Por ésta fecha ya eran conocidos 63 elementos de los 90 que existen en la naturaleza. La clasificación la llevaron a cabo los dos químicos de acuerdo con los criterios siguientes:



  • Colocaron los elementos por orden creciente de sus masas atómicas.


  • Situaron en el mismo grupo elementos que tenían propiedades comunes como la valencia.

La primera clasificación periódica de Mendeleiev no tuvo buena acogida al principio. Después de varias modificaciones publicó en el año 1872 una nueva Tabla Periódica constituida por ocho columnas desdobladas en dos grupos cada una, que al cabo de los años se llamaron familia A y B.


En su nueva tabla consigna las fórmulas generales de los hidruros y óxidos de cada grupo y por tanto, implícitamente, las valencias de esos elementos.





Tabla de Mendeleiev publicada en 1872. En ella deja casillas libres para elementos por descubrir.

Esta tabla fue completada a finales del siglo XIX con un grupo más, el grupo cero, constituido por los gas noble descubiertos durante esos años en el aire. El químico ruso no aceptó en principio tal descubrimiento, ya que esos elementos no tenían cabida en su tabla. Pero cuando, debido a su inactividad química (valencia cero), se les asignó el grupo cero, la Tabla Periódica quedó más completa.


El gran mérito de Mendeleiev consistió en pronosticar la existencia de elementos. Dejó casillas vacías para situar en ellas los elementos cuyo descubrimiento se realizaría años después. Incluso pronosticó las propiedades de algunos de ellos: el galio (Ga), al que llamó eka-aluminio por estar situado debajo del aluminio; el germanio (Ge), al que llamó eka-sicilio; el escandio (Sc); y el tecnecio (Tc), que sería el primer elemento artificial obtenido en el laboratorio, por síntesis química, en 1937.


BIBLIOGRAFIA:


http://es.wikipedia.org/wiki/Tabla_peri%C3%B3dica_de_los_elementos

NUMEROS CUANTICOS

Número cuántico

¿Cuántos números cuánticos hacen falta?

La cuestión de "¿cuántos números cuánticos se necesitan para describir cualquier sistema dado?" no tiene respuesta universal, aunque para cada si

La dinámica de cualquier sistema cuántico se describe por un Hamiltoniano cuántico, . Existe un número cuántico del sistema correspondiente a la energía, es decir, el autovalor del Hamiltoniano. Existe también un número cuántico para cada operador que conmuta con el Hamiltoniano (es decir, satisface la relación \scriptstyle HO_i = O_iH). Estos son todos los números cuánticos que el sistema puede tener. Nótese que los operadores \scriptstyle O_i que dstema se debe encontrar la respuesta a un análisis completo del sistema. De hecho, en términos más actuales la pregunta se suele formular cómo "¿Cuántos observables conforman unconjunto completo de observables compatible?". Ya que un número cuántico no es más que un autovalor de cada observable de ese conjunto.efinen los números cuánticos deben ser mutuamente independientes. A menudo existe más de una forma de elegir un conjunto de operadores independientes. En consecuencia, en diferentes situaciones se pueden usar diferentes conjuntos de números cuánticos para la descripción del mismo sistema.

Ejemplo: Átomos hidrogenoides

El conjunto de números cuánticos más ampliamente estudiado es el de un electrón simple en un átomo: a causa de que no es útil solamente en química, siendo la noción básica detrás de la tabla periódica, valencia y otras propiedades, sino también porque es un problema resoluble y realista, y como tal, encuentra amplio uso en libros de texto.

En mecánica cuántica no-relativista el Hamiltoniano de este sistema consiste de la energía cinética del electrón y la energía potencial debida a la fuerza de Coulomb entre el núcleo y el electrón. La energía cinética puede ser separada en una parte debida al momento angular, J, del electrón alrededor del núcleo, y el resto. Puesto que el potencial es esféricamente simétrico, el Hamiltoniano completo conmuta con J2. A su vez J2 conmuta con cualquiera de los componentes del vector momento angular, convencionalmente tomado como Jz. Estos son los únicos operadores que conmutan mutuamente en este problema; por lo tanto, hay tres números cuánticos. Adicionalmente hay que considerar otra propiedad de las partículas denominada espín que viene descrita por otros dos números cuánticos.

En particular, se refiere a los números que caracterizan los estados propios estacionarios de un electrón de un átomo hidrogenoide y que, por tanto, describen los orbitales atómicos. Estos números cuánticos son:

I) El número cuántico principal (n = 1 a 7), indica el nivel de energía en el que se halla el electrón. Esto determina el tamaño del orbital. Toma valores enteros Se relaciona con la distancia promedio del electrón al núcleo del orbital.

II) El número cuántico del momento angular o azimutal (l = 0,1,2,3,4,5,...,n-1), indica la forma de los orbitales y el subnivel de energía en el que se encuentra el electrón.

Si:

l = 0: Subórbita "s" ("forma circular") →s proviene de sharp (nitido) (*)

l = 1: Subórbita "p" ("forma semicircular achatada") →p proviene de principal (*)

l = 2: Subórbita "d" ("forma lobular, con anillo nodal") →d proviene de difuse (difuso) (*)

l = 3: Subórbita "f" ("lobulares con nodos radiales") →f proviene de fundamental (*)

l = 4: Subórbita "g" (*)

l = 5: Subórbita "h" (*)

(*)Para obtener mayor información sobre los orbitales vea el artículo Orbital

III) El número cuántico magnético (m), Indica la orientación espacial del subnivel de energía, "(m = -l,...,0,...,l)". Para cada valor de l hay 2l+1 valores de m.

IV) El número cuántico de spin (s), indica el sentido de giro del campo magnético que produce el electrón al girar sobre su eje. Toma valores 1/2 y -1/2.

En resumen, el estado cuántico de un electrón está determinado por sus números cuánticos:

Con cada una de las capas del modelo atómico de Bohr correspondía a un valor diferente del número cuántico principal. Más tarde se introdujeron los otros números cuánticos y Wolfgang Pauli, otro de los principales contribuidores de la teoría cuántica, formuló el celebrado principio de exclusión basado en los números cuánticos, según el cual en un átomo no puede haber dos electrones cuyos números cuánticos sean todos iguales. Este principio justificaba la forma de llenarse las capas de átomos cada vez más pesados, y daba cuenta de por qué la materia ocupa lugar en el espacio.

Desde un punto de vista mecano-cuántico, los números cuánticos caracterizan las soluciones estacionarias de la Ecuación de Schrödinger.

No es posible saber la posición y la velocidad exactas de un electrón en un momento determinado, sin embargo, es posible describir dónde se encuentra. Esto se denomina principio de incertidumbre o de Heisenberg. La zona que puede ocupar un electrón dentro de un átomo se llama orbital atómico. Existen varios orbitales distintos en cada átomo, cada uno de los cuales tiene un tamaño, forma y nivel de energía específico. Puede contener hasta dos electrones que, a su vez, tienen números cuánticos de espín opuestos.

BIBLIOGRAFIA:

http://es.wikipedia.org/wiki/N%C3%BAmero_cu%C3%A1ntico

MODELOS ATOMICOS

Modelo atómico de John Dalton

El modelo atómico de Dalton, surgido en el contexto de la química, fue el primer modelo atómico con bases científicas, fue formulado en 1808 por John Dalton.

Introducción

La observación de las cantidades fijas en las que diferentes sustancias químicas se combinaban para reaccionar químicamente, llevó a Dalton a la hipótesis de que existía una cantidad mínima o discreta de materia de cada sustancia que se combinaba de manera fija con un cierto número de unidades fijas de otras sustancias. Dalton observó que muchas sustancias podían considerarse como compuestas por diferentes especies de materia, y consecuentemente clasificó a todas las sustancias en:

  • Elementos, o sustancias químicas simples formadas por una única especie de materia.
  • Sustancias compuestas, que podían considerarse como formadas por proporciones fijas de diferentes elementos.

De acuerdo con esa idea Dalton llamó átomo a la cantidad mínima de un elemento dado. Y más tarde se llamaría molécula a una combinación de un número entero de átomos que parecía ser la cantidad mínima de cada sustancia que podía existir. El modelo atómico de Dalton asumía que los átomos eran de hecho indivisibles y sin estructura interna, de hecho, por eso escogió denominarlos a partir de la palabra griega 'ατομος' átomos 'sin partes, sin división'.

Éxitos del modelo

  • El modelo atómico de Dalton explicaba porqué las sustancias se combinaban químicamente entre sí sólo en ciertas proporciones.
  • Además el modelo aclaraba que aún existiendo una gran variedad de sustancias diferentes, estas podían ser explicadas en términos de una cantidad más bien pequeña de constituyentes elementales o elementos.
  • En esencia, el modelo explicaba la mayor parte de la química orgánica del siglo XIX, reduciendo una serie de hechos complejos a una teoría combinatoria realmente simple.

Postulados de Dalton

Dalton explicó su teoría formulando una serie de enunciados simples:.

  1. La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
  2. Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
  3. Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
  4. Los átomos, al combinarse para formar compuestos guardan relaciones simples.
  5. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
  6. Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.

Modelo atómico de Thomson

El "modelo atómico de Thomson", también conocido como el pastel de pasas, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón, antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como pasas en un Pudín. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva.En 1906 Thomson recibio el premio nobel de fisica por este descubrimiento.

Dado que el átomo no deja de ser un sistema material que contiene una cierta cantidad de energía interna, ésta provoca un cierto grado de vibración de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thomson es un modelo dinámico como consecuencia de la movilidad de los electrones en el seno de la citada estructura.

Si hacemos una interpretación del modelo atómico desde un punto de vista más macroscópico, puede definirse una estructura estática para el mismo dado que los electrones se encuentran inmersos y atrapados en el seno de la masa que define la carga positiva del átomo.

Dicho modelo fue superado luego del experimento de Rutherford, cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.

Modelo atómico de Rutherford

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.

Introducción

Previamente a la propuesta de Rutherford, los físicos pequeños aceptaban que las cargas eléctricas en un átomo tenían una distribución más o menos uniforme. Rutherford trató de ver como era la dispersión de partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos deflactados por las partículas supuestamente aportarían información sobre como era la distrubución de carga en los átomos. En concreto, era de esperar que si las cargas estaban distribuidas acordemente al modelo de Thomson la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflacciones en su trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.

Rutherford apreció que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se asumía que existían fuertes concentraciónes de cargas positivas en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente ligera, por parte de un átomo de oro más pesado depende del parámetro de impacto o distancia a la que la partícula alfa pasaba del núcleo:

\chi = 2\pi - 2\cos^{-1} \left( \frac{2K/(E_0b)}{\sqrt{1+2K/(E_0b)^2}} \right)

Donde:

K = (q_N/4\pi\varepsilon_0)\,, siendo \varepsilon_0 la constante dieléctrica del vacío y q_N\,, es la carga eléctrica del centro dispersor.
E_0\,, es la energía cinética inicial de la partícula alfa indicdente.
b\, es el parámetro de impacto.

Dado que Rutherford observó una fracción apreciable de partículas "rebotadas" para las cuales el ángulo de deflexión es cercano a χ ≈ π, de la relación inversa a que es:

b = \frac{2K}{E_0}\cot \frac{\chi}{2}

Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.

Importancia del modelo

La importancia del modelo de Rutherford residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abría varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlo:

  • Por un lado se planteó el problema de como un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.
  • Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería necesario para mantenerse en órbita, radiaría radiación electromagnética, perdiendo energía. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10 − 10s, toda la energía del átomo se habría radiado, con la consiguiente caida de los electrones sobre el núcleo. Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

Aunque según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. No obstante, los resultados de su experimento, permitieron calcular que el radio del átomo era diez mil veces mayor que el núcleo mismo, lo que hace que haya un gran espacio vacío en el interior de los átomos.


Modelo atómico de Bohr

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo que Bohr propuso en 1913 para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí sino que explica su funcionamiento por medio de ecuaciones.

Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.

Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.

Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.

Postulados de Bohr

En 1913, Niels Bohr desarrolló su célebre modelo atómico de acuerdo a cuatro postulados fundamentales:

  1. Los electrones orbitan el átomo en niveles discretos y cuantizados de energía, es decir, no todas las órbitas están permitidas, tan sólo un número finito de éstas.
  2. Los electrones pueden saltar de un nivel electrónico a otro sin pasar por estados intermedios.
  3. El salto de un electrón de un nivel cuántico a otro implica la emisión o absorción de un único cuanto de luz (fotón) cuya energía corresponde a la diferencia de energía entre ambas órbitas.
  4. Las órbitas permitidas tienen valores discretos o cuantizados del momento angular orbital L de acuerdo con la siguiente ecuación:
 L = n \cdot \hbar = n \cdot {h \over 2\pi}
Donde n = 1,2,3,… es el número cuántico angular o número cuántico principal.

La cuarta hipótesis asume que el valor mínimo de n es 1. Este valor corresponde a un mínimo radio de la órbita del electrón de 0.0529 nm. A esta distancia se le denomina radio de Bohr. Un electrón en este nivel fundamental no puede descender a niveles inferiores emitiendo energía.

Se puede demostrar que este conjunto de hipótesis corresponde a la hipótesis de que los electrones estables orbitando un átomo están descritos por funciones de onda estacionarias. Un modelo atómico es una representación que describe las partes que tiene un átomo y como están dispuestas para formar un todo.

Basándose en la constante de Planck E \ = \ h \  \nu consiguió cuantizar las órbitas observando las líneas del espectro.

Modelo atómico de Sommerfeld

El modelo atómico de Sommerfeld es un modelo atómico hecho por el físico alemán Arnold Sommerfeld (1868-1951) que básicamente es una generalización relativista del modelo atómico de Bohr (1913).

Insuficiencias del modelo de Bohr

El modelo atómico de Bohr funcionaba muy bien para el átomo de hidrógeno. Sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético tenían distinta energía, mostrando que algo andaba mal en el modelo. Su conclusión fue que dentro de un mismo nivel energético existían subniveles, es decir, energías ligeramente diferentes para un nivel energético dado.

Además desde el punto de vista teórico, Sommerfeld había encontrado que en ciertos átomos las velocidades de los electrones alcanzaban una fracción apreciable de la velocidad de la luz. Sommerfeld estudió la cuestión para electrones relativistas.

Características del modelo


En 1916, Sommerfeld perfeccionó el modelo atómico de Bohr intentando paliar los dos principales defectos de éste. Para eso introdujo dos modificaciones básicas: Órbitas cuasi-elípticas para los electrones y velocidades relativistas. En el modelo de Bohr los electrones sólo giraban en órbitas circulares. La excentricidad de la órbita dio lugar a un nuevo número cuántico: el número cuántico azimutal, que determina la forma de los orbitales, se lo representa con la letra w y toma valores que van desde 0 hasta n-1. Las órbitas con:

  • l = 0 se denominarían posteriormente orbitales s o sharp
  • l = 1 se denominarían 2 p o principal.
  • l = 2 se denominarían d o diffuse.
  • l = 3 se denominarían f o fundamental.

Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postuló que el núcleo del átomo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo al tener este una masa varios miles de veces superior a la masa del electrón.

Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las orbitas del electrón pueden ser circulares yelípticas. Introduce el número cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,…(n-1), e indica el momento angular del electrón en la orbita en unidades de \frac {h}{2\pi}, determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la orbita.

Resumen

En 1916, Arnold Sommerfeld, con la ayuda de la relatividad de Albert Einstein, hizo las siguientes modificaciones al modelo de Bohr:

  1. Los electrones se mueven alrededor del nucleo en orbitas circulares o elípticas.
  2. A partir del segundo nivel energético existen dos o más subniveles en el mismo nivel.
  3. El electrón es una corriente eléctrica minúscula.

En consecuencia el modelo atómico de Sommerfeld es una generalización del modelo atómico de Bohr desde el punto de vista relativista, aunque no pudo demostrar las formas de emisión de las órbitas elípticas, solo descartó su forma circular.


Modelo atómico de Schrödinger

El modelo atómico de Schrödinger es un modelo cuántico no relativista. Se basa en la solución de la ecuación de Schrödinger para un potencial electrostático con simetría esférica, llamado también átomo hidrogenoide.

El modelo de Bohr funcionaba muy bien para el átomo de hidrógeno. En los espectros realizados para otros átomos se observaba que electrones de un mismo nivel energético tenían energías ligeramente diferentes. Esto no tenía explicación en el modelo de Bohr, y sugería que se necesitaba alguna corrección. La propuesta fue que dentro de un mismo nivel energético existían subniveles. La forma concreta en que surgieron de manera natural estos subniveles, fue incorporando órbitas elípticas y correcciones relativistas. Así, en 1916, Arnold Sommerfeld modificó el modelo atómico de Bohr, en el cual los electrones sólo giraban en órbitas circulares, al decir que también podían girar en órbitas elípticas más complejas y calculó los efectos relativistas.

Características del modelo

El modelo atómico de Schrödinger concebía originalmente los electrones como ondas de materia. Así la ecuación se interpretaba como la ecuación ondulatoria que describía la evolución en el tiempo y el espacio de dicha onda material. Más tarde Max Born propuso una interpretación probabilística de la función de onda de los electrones. Esa nueva interpretación es compatible con los electrones concebidos como partículas cuasipuntuales cuya probabilidad de presencia en una determinada región viene dada por la integral del cuadrado de la función de onda en una región.

El modelo atómico de Schrödinger predice adecuadamente las líneas de emisión espectrales, tanto de átomos neutros como de átomos ionizados. E igualmente predice adecuadamente la modificación de los niveles energéticos cuando existe un campo magnético o eléctrico (efecto Zeeman y efecto Stark respectivamente). Además, con ciertas modificaciones semiheurísticas el modelo explica el enlace químico y la estabilidad de las moléculas. Cuando se necesita una alta precisión en los niveles energéticos puede emplearse un modelo similar al de Schrödinger, pero donde el electrón es descrito mediante la ecuación relativista de Dirac en lugar de mediante la ecuación de Schrödinger.

Sin embargo, el nombre de "modelo atómico" de Schrödinger puede llevar a confusión ya que no explica la estructura completa del átomo. El modelo de Schrödinger explica sólo la estructura electrónica del átomo y su interacción con la estructura electrónica de otros átomos, pero no explica como es el núcleo atómico ni su estabilidad.

Solución de la ecuación de Schrödinger

Las soluciones estacionarias de la ecuación de Schrödinger en un campo central electrostático, están caracterizadas por tres números cuánticos (n, l, m) que a su vez están relacionados con lo que en el caso clásico corresponderían a las tres integrJustificar a ambos ladosales del movimiento independientes de una partícula en un campo central. Estas soluciones o funciones de onda normalizadas vienen dadas en coordenadas esféricas por:

 \psi_{nlm}(\theta,\phi,r) = \sqrt {{\left (  \frac{2}{n a_0} \right )}^3\frac{(n-l-1)!}{2n[(n+l)!]}2} e^{- \rho / 2} \rho^{l} L_{n-l-1}^{2l+1}(\rho) \cdot Y_{l,m}(\theta, \phi )

donde:

 \rho = {2r \over {na_0}}
a0 es el radio de Bohr.
 L_{n-l-1}^{2l+1}(\rho) son los polinomios generalizados de Laguerre de graEliminar formato de la seleccióndo n-l-1.
 Y_{l,m}(\theta, \phi ) \, es el armónico esférico (l, m).

Los autovalores son:

Para el operador momento angular:

 L^2 | n, l, m \rang = {\hbar}^2 l(l+1) | n, l, m \rang
 L_z | n, l, m \rang = \hbar m | n, l, m \rang

Para el operador hamiltoniano:

 H| n, l, m \rang = E_n | n, l, m \rang

donde:

 E_n = -{{m c^2 Z^2 \alpha^2} \over {2 \cdot n^2}} = - {{m \over 2 \hbar^2}\left({Z e^2 \over 4 \pi \epsilon_0}\right)^2{1 \over n^2}}
α es la constante de estructura fina con Z=1.
BIBLIOGRAFIA:
http://es.wikipedia.org/wiki/Categor%C3%ADa:Modelos_at%C3%B3micos

LA MATERIA DISCONTINUA

Teoría cinética

La teoría cinética de los gases es una teoría física que explica el comportamiento y propiedades macroscópicas de los gases a partir de una descripción estadística de los procesos moleculares microscópicos. La teoría cinética se desarrolló con base en los estudios de físicos como Ludwig Boltzmann y James Clerk Maxwell a finales del siglo XIX.

Principios


Los principios fundamentales de la teoría cinética son los siguientes:

  • Los gases están compuestos de moléculas en movimiento aleatorio. Las moléculas sufren colisiones aleatorias entre ellas y las paredes del recipiente contenedor del gas.
  • Las colisiones entre las moléculas del gas y las paredes del recipiente contenedor son elásticas.

Adicionalmente, si el gas está en el interior de un recipiente, las colisiones con sus paredes se asume que son instantáneas y perfectamente elásticas.

  • Están en constante movimiento, chocando entre ellas y contra las paredes del recipiente que lo contiene.

Estos postulados describen el comportamiento de un gas ideal. Los gases reales se aproximan a este comportamiento ideal en condiciones de baja densidad y temperatura.

Presión

En el marco de la teoría cinética la presión de un gas es explicada como el resultado macroscópico de las fuerzas implicadas por las colisiones de las moléculas del gas con las paredes del contenedor. La presión puede definirse por lo tanto haciendo referencia a las propiedades microscópicas del gas.

En efecto, para un gas ideal con N moléculas, cada una de masa m y moviéndose con una velocidad aleatoria promedio vrms contenido en un volumen cúbico V las partículas del gas impactan con las paredes del recipiente de una manera que puede calcularse de manera estadística intercambiando momento lineal con las paredes en cada choque y efectuando una fuerza neta por unidad de área que es la presión ejercida por el gas sobre la superficie sólida.


La presión puede calcularse como

P = {Nmv_{rms}^2 \over 3V}

Este resultado es interesante y significativo no sólo por ofrecer una forma de calcular la presión de un gas sino porque relaciona una variable macroscópica observable, la presión, con la energía cinética traslacional promedio por molécula, 1/2 mvrms², que es una magnitud microscópica no observable directamente. Nótese que el producto de la presión por el volumen del recipiente es dos tercios de la energía cinética total de las moléculas de gas contenidas.

Temperatura

La ecuación superior nos dice que la presión de un gas depende directamente de la energía cinética molecular. La ley de los gases ideales nos permite asegurar que la presión es proporcional a la temperatura absoluta. Estos dos enunciados permiten realizar una de las afirmaciones más importantes de la teoría cinética: La energía molecular promedio es proporcional a la temperatura. La constante de proporcionales es 3/2 la constante de Boltzmann, que a su vez es el cociente entre la constante de los gases R entre el número de Avogadro. Este resultado permite deducir el principio o teorema de equipartición de la energía.

La energía cinética por Kelvin es:

  • Por mol 12.47 J
  • Por molécula 20.7 yJ = 129 μeV

En condiciones estándar de presión y temperatura (273.15 K) se obtiene que la energía cinética total del gas es:

  • Por mol 3406 J
  • Por molécula 5.65 zJ = 35.2 meV

Ejemplos:

  • Dihidrógeno (peso molecular = 2): 1703 kJ/kg
  • Dinitrógeno (peso molecular = 28): 122 kJ/kg
  • Dioxígeno (peso molecular = 32): 106 kJ/kg

Velocidad promedio de las moléculas

De las fórmulas para la energía cinética y la temperatura se tiene

v_{rms}^2 = 24,940 T / peso molecular

donde v se mide en m/s yT en grados Kelvin.

Para una temperatura estándar la velocidad promedio de las moléculas de gas son:

  • Dihidrógeno 1846 m/s
  • Dinitrógeno 493 m/s
  • Dioxígeno 461 m/s

Las velocidades más probables son un 81.6% de estos valores.


Ley de los gases ideales

La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.

Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.

La ecuación de estado

La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:

P \cdot V = n \cdot R \cdot T \,\!

Donde:

  • P\! = Presión
  • V\! = Volumen
  • n\! = Moles de Gas.
  • R\! = Constante universal de los gases ideales .
  • T\! = Temperatura absoluta

Ecuación general de los gases ideales


Partiendo de la ecuación de estado:

P \cdot V = n \cdot R \cdot T \,\!

Tenemos que:

 \frac{P \cdot V }{n \cdot T} = R

Donde R es la constante universal de los gases ideales, luego para dos estados del mismo gas, 1 y 2:

 \frac{P_1 \cdot V_1 }{n_1 \cdot T_1} = \frac{P_2 \cdot V_2 }{n_2 \cdot T_2} = R

Para una misma masa gaseosa (por tanto, el número de moles «n» es constante), podemos afirmar que existe una constante directamente proporcional a la presión y volumen del gas, e inversamente proporcional a su temperatura.

\cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2}
BIBLIOGRAFIA:
http://es.wikipedia.org/wiki/Ley_de_los_gases_ideales

UNIDADES

TEMAS:
1.LA MATERIA DISCONTINUA
2.MODELOS ATOMICOS
3.NUMEROS CUANTICOS
4 TABLA PERIODICA
5.SOLUCIONES